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ABSTRACT Reconstruction of highly accelerated dynamic magnetic resonance imaging (MRI) is of crucial
importance for the medical diagnosis. The application of general robust principal component analysis
(RPCA) to MRI can increase imaging speed and efficiency. However, conventional RPCA makes use of
nuclear norm as convex surrogate of the rank function, whose drawbacks have been mentioned in plenty of
literature. Recently, nonconvex surrogates of the rank function in RPCA have been widely investigated and
proved to be tighter rank approximation than nuclear norm by the massive experimental results. Motivated
by this, we propose a nonconvex alternating direction method based on nonconvex rank approximation to
reconstruct dynamic MRI data from undersampled k − t space data. We solve the associated nonconvex
model by the alternating direction method and difference of convex programming. The convergence analysis
provided guarantees the effectiveness of our algorithm. Experimental results on cardiac perfusion and cardiac
cine MRI data demonstrate that our method outperforms the state-of-the-art MRI reconstruction methods in
both image clarity and computation efficiency.

INDEX TERMS Magnetic resonance imaging, nonconvex, low-rank matrix approximation.

I. INTRODUCTION
Dynamic magnetic resonance imaging (MRI) is extremely
important for medical research and diagnosis. However,
MRI usually requires longer scanning time than patients can
endure. For example, it often costs 40-60s in cardiac per-
fusion imaging [1]. Hence, MR perfusion imaging evalua-
tion is inevitably disturbed by the inconsistent myocardial
motion mainly caused by the breath of the examined patient.
Specially, the long scanning time has become a bottleneck
to restrict the clinical application of MRI. Therefore, how to
achieve clear images through fast reconstruction is an urgent
problem to be solved.

With the help of the theory of compressed sensing (CS)
[2] and breaking through the traditional sampling limi-
tation, researchers utilize the undersampled data instead
of fully-sampled data to reconstruct the MR images fast

and efficiently. In the context of dynamic MRI, RPCA
decomposes each image into a low-rank matrix plus a sparse
matrix since a series of images have spatiotemporal correla-
tions which necessarily lead to producing a low-rank matrix
corresponding to the background of images. On the other
hand, a sparse matrix can depict the pathological lesion on
the top of the background [3]. The existing MRI reconstruc-
tion methods exactly use the above-mentioned characteristic,
consequently, a variety of optimization algorithms based on
RPCA have been proposed for improving the reconstruction
speed, see [1], [3]–[5]. Otazo et al. [3] utilized the undersam-
pled dynamic MRI to formulate the multicoil low-rank plus
sparse reconstruction by a convex optimization algorithm,
where the nuclear-norm and l1-norm were used as the con-
vex surrogate functions for the rank function and l0-norm,
respectively. Lustig et al. [4] exploited the sparsity property
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implying in MR images to reduce the scanning time and
improve the reconstruction of MRI. Lingala et al. [5] pro-
posed a variable splitting algorithm to reconstruct dynamic
MRI data from under-sampled k-t space data. Gao et al. [6]
presented a new spatiotemporal model named the robust
PCA-based 4D computed tomography model, applica-
ble in some imaging problems including cardiac MRI.
Zonoobi et al. [7] proposed a re-formulation of the L and S
decomposition to take some priori information into account
and used a soft-thresholding based algorithm to reconstruct a
time sequence of 3D cardiac MRI.

As we mentioned above, the state-of-the-art RPCA applied
in MRI utilizes the dynamic MRI data to formulate low-
rank plus sparse reconstruction and most literature considers
convex surrogate of the rank function, i.e., nuclear norm.
However, this kind of convex formulation has inevitably
drawbacks despite their success in the previous applications.
We summarize them as follows:
a) The practical data matrix may have not incoherence

guarantee, therefore, under this circumstance, the opti-
mal solution of the traditional RPCA convex model may
deviate seriously from the truth [8].

b) The nuclear norm (which is the sum of singular val-
ues of the matrix in question) requires a computation-
ally expensive singular value decomposition (SVD) of
matrix at each iteration. Moreover, it is unreasonable to
replace the rank function with the nuclear norm since
this kind of simple summationmeans that all the singular
values are dealt with equally. As a matter of fact, the
larger singular value should be less penalized otherwise
the nuclear norm may be decided by a few large singular
values.

c) The matter that nuclear norm cannot approximate the
rank function well may derive from the following prob-
lem in CS. Conventional CS recovers original vector-
form data by replacing l0-norm with l1-norm. However,
unfortunately, it has been shown that the l1-norm is just
a loose approximation of the l0-norm even under certain
incoherent conditions [9], what is more, the approxima-
tion error can not be neglected in most cases [10]. For
a vector, l0-norm is the number of nonzero elements,
and l1-norm is the sum of absolute values of all the
elements. In fact, if we rearrange all the singular values
of a matrix into a vector, then the nuclear norm of
this matrix can be viewed as the l1-norm of the above
vector [7], [8], while the rank of this matrix can be
viewed as its l0-norm. For the reason that l1-norm is not
a satisfactory approximation of l0-norm, we are aware
that the nuclear norm may be not an appropriate approx-
imation of the rank in the RPCA problems.

Therefore, it is necessary to look for more accurate surro-
gates of the rank function and to design related algorithms
for solving the RPCA problems in the reconstruction of
MRI. To be exciting, some researchers have considered the
drawbacks of convex approximation and have been devoted

to looking for new surrogates of the rank function. Among
them, Xiu et al. [1] utilized the rank-one and transformed
sparse decomposition for dynamic cardiac MRI, where the
rank-one matrix corresponded to the background of an MR
image. However, it needed the priori knowledge that the rank
of low-rank matrix was one. Hu et al. [11] obtained a better
rank approximation by a truncated nuclear norm where the
largest few singular values were removed. One other idea
is motivated by the recent success in using nonconvex sur-
rogates of l0-norm [12]–[20]. For example, Sun et al. [10]
proposed a nonconvex model of RPCA by using the capped
trace norm and the capped l1-norm. Kang et al. [21] exploited
a log-determinant function as a tighter but nonconvex approx-
imation of the rank function. Similar to the Geman func-
tion [19], Kang et al. defined a new norm called γ -norm in
[8] to approximate the rank function, and experimental results
showed that it was a tighter approximation than the nuclear
norm. Xie et al. [22] introduced a nonconvex regularizer
named weighted Schatten p-norm to replace the rank function
and achieved better approximation. Lu et al. [12] used a fam-
ily of nonconvex surrogates of l0-norm on the singular values
of the matrix to approximate the rank function for solving
nonconvex low rank minimization problem. Yu et al. [23]
derived a general thresholding representation in the form of a
recursive function for general lp regularization problem and
obtained the related filtering algorithm applicable to medical
image reconstruction.

In this paper, we propose a novel method to speed up
the reconstruction of MRI by using two kinds of nonconvex
surrogate functions of l0-norm as rank approximation. The
main contributions of this paper are as follows:
1) The algorithms proposed in this paper are based on the

nonconvex approximation of the rank function. Then it
is used in RPCA to reconstruct the dynamic MRI data,
which is naturally of low-rank and sparse structure.

2) We utilize the alternating direction method (ADM) and
difference of convex(DC) programming to solve the
resultant optimization problem, in which the objective
function is a combination of concave and convex func-
tions.

3) We propose two nonconvex algorithms based on the
alternating direction method by using two kinds of non-
convex surrogate functions of l0-norm for rank approx-
imation, and prove the convergence of our algorithms.
In addition, experimental results on cardiac perfusion
and cardiac cine MRI data demonstrate the validity and
efficiency of our methods.

The remainder of this paper is organized as follows.
Section II provides a brief review of RPCA and the popular
nonconvex surrogates of l0-norm. Section III presents the
nonconvex approximation of rank function and proposes our
algorithms to solve the associated models. Section IV gives
convergence analysis. Section V describes the experimen-
tal results on cardiac perfusion and cardiac cine MRI data.
Section VI summarizes this paper.
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II. REVIEW OF RPCA AND NONCONVEX SURROGATES
In this section, we present a brief review of RPCA and the
nonconvex surrogate functions.

A. REVIEW OF RPCA
The general form of RPCA problem is as follows [24]:

min
L,S

rank(L)+ λ‖S‖0 s.t. L + S = D, (1)

where L, S,D ∈ Rm×n, L and S are unknown, but L is known
to be a low-rank matrix, S is known to be a sparse matrix,D is
the observed data matrix, and λ is the regularization param-
eter. The ideal RPCA problem is to recover L by (1) for
appropriate λ.
Unfortunately, (1) is a highly nonconvex optimization

problem, and there is no efficient solution to be known [25].
A general method to solve this problem is to replace the
objective function with a convex function. By replacing the
rank function with the nuclear norm and the l0-norm with
the l1-norm, we can obtain the convex surrogate reformula-
tion of (1):

min
L,S
‖L‖∗ + λ‖S‖1 s.t. L + S = D, (2)

where the nuclear norm of L is defined as ‖L‖∗ = 6iσi(L),
i.e., the sum of all its singular values, and ‖S‖1 = 6ij|Sij|.
Since ‖L‖∗ + λ‖S‖1 is the convex envelope of rank(L) +
λ‖S‖0, the above reformulation (2) is a convex approximation
of (1).

Although the relaxed convex model (2) based on nuclear
norm has been widely used and achieved success, there still
exist two intrinsic drawbacks which we have mentioned in
section I, b) and c). This motivates us to find the tighter
approximation of the rank function.

There are many popular nonconvex surrogate functions of
l0-norm, which can be used for the nonconvex surrogates
of the rank function since the rank may be viewed as the
number of nonzero singular values. We give a brief review
of nonconvex surrogates in the following subsection.

B. REVIEW OF NONCONVEX SURROGATE FUNCTIONS
The popular nonconvex surrogate functions of l0-norm
include capped l1 [17], Geman [19], Laplace [20] and so on.
To obtain a comprehensive summary, see [12]. Here, we only
list the forementioned ones in Table 1.

TABLE 1. Nonconvex surrogate functions of ‖σ‖0.

Numerical experiments in [26] demonstrate that the non-
convex optimization often outperforms its convex counterpart
in the application areas including image processing.

III. MODELS AND ALGORITHMS
In this section, we construct an algorithm structure in which
different nonconvex surrogates can be used for approximating
the rank function. We call our algorithm nonconvex alternat-
ing direction method, abbreviated as NADM, which uses the
nonconvex surrogate of the rank function and exploits the
alternating direction method framework.

A. MODELS
The low-rank and sparse decomposition model given in [3] to
reconstruct undersampled dynamic MRI is as follows:

min
L,S
‖L‖∗ + λ‖TS‖1 s.t. E(L + S) = d, (3)

where L, S ∈ Cm×n, T is a sparsifying transform for S, E is
the encoding or acquisition operator and d is the undersam-
pled k-t data.
To solve problem (3), firstly, we introduce two definitions.

One is defined in [8] called γ -norm of L therein. The other
is also some kind of γ -norm. These two definitions are based
on the last two functions in Table 1. In this paper, we name
them Geman-norm and Laplace-norm, respectively. We will
replace the nuclear norm with these two norms in (3).
Definition 1 (Geman-Norm [8], [19]): Suppose that L is

an m× n matrix, γ is a positive parameter, define

‖L‖γ =
∑
i

(1+ γ )σi(L)
γ + σi(L)

, γ > 0, (4)

where σi(L) denotes the i-th singular value of matrix L.
Definition 2 (Laplace-Norm): Suppose that L is an m× n

matrix, γ is a positive parameter, define

‖L‖γ =
∑
i

(1− e−σi(L)/γ ), γ > 0, (5)

where σi(L) denotes the i-th singular value of matrix L.
Although neither of them is real norm, they still have

satisfying properties. We summarize them in the following
proposition:
Proposition 1:
1) lim

γ→0
‖L‖γ = rank(L).

2) ‖L‖γ is unitarily invariant, i.e., ‖L‖γ = ‖ULV‖γ for
any orthonormal U ∈ Cm×m and V ∈ Cn×n.

3) positive definiteness: ‖L‖γ ≥ 0 for any L ∈ Cm×n and
‖L‖γ = 0 if and only if L = 0.
Proof:

1) For f (σi(L)) =
(1+γ )σi(L)
γ+σi(L)

and f (σi(L)) = 1− e
−σi(L)
γ ,

we have lim
γ→0

f (σi) =

{
0 σi(L) = 0
1 σi(L) 6= 0

which consequently deduces the conclusion.
2) Suppose that (·)H , (·)−1and λ denote the transpose,

inverse and eigenvalue of matrix, respectively. E is a
unit matrix. Then the eigenpolynomial |(ULV )HULV −
λE| = |VHLHUHULV − λE| = |VHLHLV − λE| =
|V−1LHLV−λE| = |LHL−λE|. This means that matri-
ces (ULV )HULV and LHL have the same eigenvalues.
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Consequently,ULV and L have the same singular values.
Hence, the conclusion is true.

3) The conclusion exactly holds for the reason that f (σi(L))
takes the values of 0 if and only if L = 0, alternatively,
1 when L 6= 0. �

FIGURE 1. The changing curves of Geman-norm for different values of γ .
Comparison with nuclear norm and the true rank respecting to an
increasing singular value σi (L).

FIGURE 2. The changing curves of Laplace-norm for different values of γ .
Comparison with nuclear norm and the true rank respecting to an
increasing singular value σi (L).

Fig. 1 and Fig. 2 show that the smaller the γ is, the closer
the Geman and Laplace norm approach the true rank. This
phenomenon coincides with the first property of γ -norm in
Proposition 1. We can also observe that the nuclear norm
deviates seriously from the true rank when the singular value
is far beyond one.

Replacing the nuclear norm ‖L‖∗ in problem (3) with the
well-defined γ -norms ‖L‖γ , we can obtain the following
model:

min
L,S
‖L‖γ + λ‖TS‖1 s.t. E(L + S) = d, (6)

Actually, the real MRI data used in our paper are
three-dimensional. Here, we transform them into matrices
considering the spatio-temporal correlations, in other words,
we unfold the 3-way tensor by mode-3, i.e., along the time
dimension. Therefore, similar to (3), L and S in (6) are
also matrices. Next, our work is to design algorithms for
solving problem (6). Then, in the following subsection, we
will discuss the properties of the algorithms involved.

B. ALGORITHMS
In this subsection, we present the details of solving the prob-
lem (6). Additionally, different γ -norms can be used in our
algorithm according to definition 1 and 2. We distinguish
them by G-NADM and L-NADM, respectively.

1) NONCONVEX ALTERNATING
DIRECTION METHOD (NADM)
a: ALTERNATING DIRECTION METHOD FRAMEWORK
By using regularization rather than strict constraints, the
unconstrained formulation of (6) is as follows:

min
L,S

1
2
‖E(L + S)− d‖22 + λ1‖L‖γ + λ2‖TS‖1 (7)

where the parameters λ1 and λ2 are used to balance the data
consistency versus the complexity of the solution.

This unconstrained optimization problem can be solved
by alternating direction method which is very efficient and
extensible for many large-scale programming problems aris-
ing in machine learning.

The alternating direction method for (7) takes the form:

Lk+1 = argmin
L

{
1
2
‖E(L + Sk )− d‖22 + λ1‖L‖γ

}
(8)

Sk+1 = argmin
S

{
1
2
‖E(Lk+1 + S)− d‖22 + λ2‖TS‖1

}
(9)

In the following, we will exploit some strategies to solve
the subproblems (8) and (9).

b: DIFFERENCE OF CONVEX PROGRAMMING TO UPDATE L
Note that (8) is a combination of convex and nonconvex
functions with the first term being convex and the second
term being nonconvex. Hence, we resort to the difference
of convex(DC) programming. Similar to [27], we have the
following lemma.
Lemma 1: The subdifferential of ‖L‖γ is given by

∂‖L‖γ = {Udiag(l)V T
: li =

df (σi)
d(σi)

, i = 1, 2, . . . , rank(L)}

(10)

where the columns of U and V are the left and right singular
vectors of L, respectively, and li =

γ (1+γ )
(σi(L)+γ )2

as in defini-

tion 1, or li = e−σi(L)/γ
γ

as in definition 2.
By Lemma 1, the (k + 1)-th iteration of L in (8) can be

reformed as

Lk+1 = argmin
L

{
1
2
‖E(L + Sk )− d‖22 + λ1〈∂‖Lk‖γ ,L〉

}
(11)

VOLUME 5, 2017 1961



F. Xu et al.: Dynamic MRI via Nonconvex Low-Rank Matrix Approximation

Let the derivative of its objective function with respect to L
equal zero, we can derive:

Lk+1 = (EHE)−1(EHd − EHESk − λ1∂‖Lk‖γ ) (12)

c: DATA CONSISTENCY STRATEGY [3]
We can solve the optimization problem (9) by using the
iterative soft-thresholding of TS. Firstly, we introduce the
definition of singular value thresholding (SVT) operator.
Definition 3 (SVT Operator):

SVTλ(A) = U3λ(A)VH (13)

where A = U6VH is any singular value decomposition of A,
and3λ(A) denotes applying the following shrinkage operator
3λ(·) for each element of A, i.e.,

3λ(x) =
x
|x|

max(|x| − λ, 0) (14)

where x ∈ C, λ ∈ R.
With this, the (k+1)-th iteration of S in (9) can be reformed

as

Sk+1 = T−1(3λ2 (T (Mk − Lk ))) (15)

where M0 = EHd , and the matrix Mk is used to maintain
data consistency. By applying the forementioned shrinkage
operator to Mk − Lk , we obtain Mk+1 as follows:

Mk+1 = Lk+1 + Sk+1 − EH (E(Lk+1 + Sk+1)− d) (16)

In (16), the aliasing artifacts corresponding to the residual
EH (E(Lk+1 + Sk+1)− d) are subtracted from Lk+1 + Sk+1.
At last, we summarize all the details in Algorithm 1.

Algorithm 1 NADM: Alternating Direction Method for
Non-Convex RPCA
Input: d : undersampled k-t data

E : encoding operator
T : sparsifying transform
λ1: singular-value threshold
λ2: sparsity threshold

Initialize: L0 = M0 = EHd, S0 = 0, k = 0
while not converge do

Compute the gradient ∂‖Lk‖γ with (10);
Update Lk+1 with (12);
Update Sk+1 with (15);
Update Mk+1 with (16).

end while
Output: Lk+1, Sk+1.

IV. CONVERGENCE ANALYSIS
In this section, we give the convergence analysis for Algo-
rithm 1. First, we prove the following lemma:
Lemma 2: Let {Lk}and{Sk} be the sequences generated

by Algorithm 1, then {Lk}and{Sk} are bounded.

Proof: First, we rewrite the objective function of (7) as
follows:

W (L, S) =
1
2
‖E(L + S)− d‖22 + λ1‖L‖γ + λ2‖TS‖1 (17)

We have the following conclusions from (8) and (9):

W (Lk+1, Sk ) ≤ W (Lk , Sk )

W (Lk+1, Sk+1) ≤ W (Lk+1, Sk )

then

W (Lk+1, Sk+1) ≤ W (Lk , Sk ) (18)

therefore, the sequence {W (Lk , Sk )} is nonincreasing.
Next, we will show that the sequences {Lk} and {Sk} are

bounded. We first prove the boundedness of {Lk}.
Assume to the contrary, suppose {Lk} to be unbounded,

then for an arbitrary positive real number M , there always
exists a positive integer N , such that for k ≥ N and any norm
‖ · ‖, we have ‖Lk‖ ≥ M , i.e., ‖Lk‖ → ∞. Hence, the first
term of (17), 1

2‖E(Lk + Sk )− d‖
2
2→∞.

Since ‖L‖γ is a pseudo norm, we discuss it in two cases:
i) If σi(Lk ) is unbounded when {Lk} is unbounded, then

from definition 1 and definition 2 respectively, we have

lim
σi(Lk )→∞

(1+ γ )σi(Lk )
γ + σi(Lk )

= 1+ γ,

lim
σi(Lk )→∞

1− e−
σi(Lk )
γ = 1.

Note that γ takes the values approaching to 0, it follows
that ‖L‖γ is bounded.

ii) If σi(Lk ) is bounded when {Lk} is unbounded, then
obviously, ‖L‖γ is also bounded from definition 1 and
definition 2.

Hence, ‖L‖γ is always bounded.
Similar to the proof of {Lk}, suppose {Sk} to be unbounded,

then the first and the third term of (17), i.e., 1
2‖E(Lk + Sk )−

d‖22 and ‖TS‖1 are unbounded.
In summary, either {Lk} or {Sk} is unbounded, then
{W (Lk , Sk )} is unbounded, together with its nonnegativity, we
have W (Lk , Sk ) → ∞, which contradicts with the conclu-
sion in (18) that {W (Lk , Sk )} is monotonically nonincreasing.
Hence, {Lk} and {Sk} are both bounded. �
Theorem 1: Suppose that the sequence {(Lk , Sk )} is

generated by Algorithm 1, then any accumulation point of
{(Lk , Sk )} is a local minimizer of (6).

Proof: By Lemma 2, {(Lk , Sk )} are bounded.
So {(Lk , Sk )} has at least one accumulation point denoted
by {(L∗, S∗)}. Together with the conclusion in (18)
that {W (Lk , Sk )} is monotonically nonincreasing, then
limk→∞W (Lk , Sk ) exists, and

lim
k→∞

W (Lk , Sk ) = W (L∗, S∗).

Therefore, {(L∗, S∗)} is a local minimizer of (6). �
Our experimental results on cardiac perfusion and cardiac

cine MRI data confirm the convergence of Algorithm 1.
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FIGURE 3. Performance of different algorithms for dynamic cardiac perfusion. The three rows from top to bottom correspond to the algorithms: IST,
G-NADM, L-NADM; the three columns from left to right correspond to L + S, low-rank component L and sparse component S of the observed data D. This
figure can be better viewed in zoomed PDF.

FIGURE 4. Performance of different algorithms for dynamic cardiac cine. The three rows from top to bottom correspond to the algorithms: IST, G-NADM,
L-NADM; the three columns from left to right correspond to L + S, low-rank component L and sparse component S of the observed data D. This figure can
be better viewed in zoomed PDF.

V. NUMERICAL EXPERIMENTS
In this section, we compare our proposed algorithms with
IST [3] for dynamic cardiac MRI data. We apply these two
algorithms onMR images: cardiac perfusion and cardiac cine,
which can be downloaded online at http://cai2r.net/resources/
software/ls-reconstruction-matlab-code. All the experiments
are run in MATLAB R2013a on a PC with a COREi3
2.40GHz CPU and 4GB memory.

The stopping criterion of our algorithms is the relative error
being less than 2.5× 10−3, namely,

RelErr =
‖Lk+1 + Sk+1 − (Lk + Sk )‖F

‖Lk + Sk‖F
≤ 2.5× 10−3

(19)

We choose λ1 = 1, λ2 = 0.05, γ = 0.005 on dynamic
cardiac perfusion data, and λ1 = 1, λ2 = 0.0001, γ = 0.005
on dynamic cardiac cine data. Experimental results and the

comparison among these three algorithms (IST, G-NADM,
L-NADM) are presented in Figs. 3-6, Tables 2 and 3.

Furthermore, we analyze how our algorithms perform with
the different values of γ for both of the two data sets.
Concretely, we compute the root mean square error (RMSE)
defined as:

RMSE =
‖D− L − S‖F
‖D‖F

, (20)

where D,L, S represent the observed data, low-rank and
sparse matrices, respectively. Take the cardiac perfusion data
set as an example, by setting γ = 0.001, step size = 0.001
and stopping when γ = 0.03, we find that the RMSE takes
the value between 0.733 and 0.735 when γ ∈ [0.005, 0.03],
and the RMSE takes the value of 1 when γ ∈ [0.001, 0.004],
which means that our algorithms fail to recover the low-rank
matrix L from the data D. Therefore, smaller γ can better
approximate the rank but performs worse in convergence.
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FIGURE 5. Convergence curves with respect to iterations. The two
subfigures from left to right are for cardiac perfusion and cardiac cine
data sets, respectively. This figure can be better viewed in zoomed PDF.

FIGURE 6. L + S decomposition of cardiac perfusion data set
corresponding to the 58th. column (signed with the red dashed). The
middle column represents the observed data D; the rightmost three
columns are the results of decomposition by: IST, G-NADM and L-NADM,
respectively; the three rows from top to bottom are L, S and TS,
respectively.

TABLE 2. Computational results for dynamic cardiac perfusion.

TABLE 3. Computational results for dynamic cardiac cine.

The parameter γ with the lowest RMSE and best
rank approximation is employed in the reconstruction,
here, γ = 0.005.

A. DYNAMIC CARDIAC PERFUSION
In Fig. 3, the display window is [0, 1], the dynamic range
of the images are 128 × 128 × 40; images from top to
bottom represent the results of IST, G-NADM and L-NADM,
respectively; the first column L + S per row are the super-
position of the other two columns L and S. The experimen-
tal results demonstrate that the reconstructed images using
G-NADM and L-NADM are more clear in both background
and foreground (see the red arrows which point to the obvi-
ous differences), which means that we can observe cardiac
disease easier.

Furthermore, in Table 2, the quantitative indexes of images
reconstructed through different method are analyzed. For this
end, we compute the RMSE defined as (20). It is clearly seen
that our RMSE values are smaller than that of IST, meaning
that we have better reconstruction results.

Besides, it is evident from Table 2 that the iteration times
and relative errors of G-NADM and L-NADM are less
than those of IST, and computation time is much shorter.
Additionally, consistent with the expected results, the rank of
the low-rank matrix is one. The improvement in the results of
experiment is because we use the nonconvex approximation
of the rank function, which is closer to the true rank than the
nuclear norm. Fig. 5 displays the convergence curves with
respect to iterations, our algorithms G-NADM and L-NADM
have the similar shape of curve.

Fig. 6 shows L+S decomposition of cardiac perfusion data
set corresponding to the central location (see the red dashed
sign). L captures the background along the time dimen-
sion, S includes the remaining dynamic information and TS
shows the increased sparsity by the sparsifying transform T
for S. It is clearly seen that the low-rank components L by
G-NADM and L-NADM are cleaner.

B. DYNAMIC CARDIAC CINE
In Fig. 4, the display window is [0, 1], the dynamic range
of the images are 256 × 256 × 24. Similarly, experimental
effects on the dynamic cardiac cine are satisfactory as well.
Fig. 4 and Table 3 show that our nonconvex rank surrogate
based algorithms (G-NADM, L-NADM) can reconstruct bet-
ter images than IST on the dynamic cardiac cine data since
our nonconvex rank approximation can approach the rank
function more closely.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a nonconvex RPCA formulation
(6) to reconstruct the dynamic MRI. Unlike the conventional
nuclear norm based methods, our method deduces a com-
bination of convex and nonconvex objective function in the
involved problem (7). We make use of the alternating direc-
tion method and difference of convex programming to solve
the transformed optimization problem. Experimental results
on dynamic cardiac MRI data demonstrate the accuracy and
efficiency of our algorithms. This verifies the applied abil-
ity of nonconvex RPCA for dynamic MRI. Furthermore, as
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forementioned, the MRI data used in our paper are three-
dimensional. Here, we transform them into matrices through
unfolding the 3-way tensor by mode-3. Actually, the matrix
unfoldings of a tensor are nearly low-rank [28], no matter by
mode-1, mode-2 or mode-3. Therefore, we may also consider
theMRI data more from the view of tensor, namely, unfolding
them by different modes. This is the future work we will do.
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